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Abstract. ivioiivated by the Swendsen-.Eang algorithm ior the ising model with no 
extemal magnetic field we consider a particle system on a discrete lattice evolving 
according to the following parallel algorithm: at each time step connected clustem of 
partides are removed with probability $ and at each empty site a partide is created 
with probability p .  Due to the presence of arbitrarily large clusters the interaction can 
have an arbitrary range. In the one-dimensional case we solve the model completely 
b y  means of a novel path expansion in spacetime. in the two-dimensional c a e  we 
show that, due to strong time correlation, the probability of having a large cluster of 
partides does not rapidly decay exponentially in the cardinality of the cluster even 
for p very small. We then prove ergodicity for 1 - p close to zero. 

1. Introduction 

In the last few years, stimulated by the beautiful work by Swendsen and Wang [l] ,  there 
has  been an  increasing interest in computational physics in the so-called stochastic 
cluster algorithms for the Monte Carlo simulation of models of statistical physics such 
as the Ising and Potts models, and frustrated systems (see [2-51). 

In these algorithms, contrary to  the more traditional single-site algorithm like 
Glauber dynamics, a t  each time step one is allowed to change a whole cluster of 
dynamic variables simultaneously (e.g. the spins in the king model). The result is, 
in general, a better numerical efficiency for the algorithm and a faster convergence of 
the Monte Carlo simulation. 

From a rigorous point of view stochastic cluster algorithms have received little 
attention and only recently have some partial results for the Swendsen-Waug (SW) 
dynamics been obtained (see [S-61). In particular in [7] and [6] in collaboration with E 
Olivieri we successfully analysed the low temperature behaviour of the SW algorithm 
for the &dimensional Ising model in t,he presence of a small magnetic field. In sw 
dynamics the effect of an  external field h in updating a large clust,er of spins produces 
an almost sure move in the sense that putting the new values of the spins i n  a cluster C 
antiparallel to  the field has an exponentially small probability in  the cardinality of the 
cluster. This feature allowed us to control the flow of information through the system 
by means of simpie expansions, that  is the inhence  among distant regions and as a 
consequence the rate of approach to  the equilibrium. However the very interesting case 
of the zero external field remained open. In this case each cluster becomes either plus 
or minus with probability f irrespective of its size and therefore a rigorous analysis of 
the dynamics becomes much harder. 

~ ~ ~ j - ~ ~ i ~ ; g i ; i ~ ~ i ~ ~ + ~ ~ ~ ~ . ~ ~  @ i9Si iOP Publishing Lid 3i35  
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Motivated by this problem we consider here as a laboratory a simple stochastic 
cluster dynamics which shares with the  SW algorithm without an  external field the  
property tha t  the probability t h a t  the updating of clusters of dynamical variables 
(particles in our cme) occurs is independent of the geometry of the cluster. 

T h e  setting is as follows: at each point z in the box A = [-L, L I d f l Z d  we associate 
an occupation variable U(.) with values 0 or 1; given a Configuration ut at time t in 
order to define the new configuration utC1 at, time t + 1 we first consider all connected 
clusters of particles (sites at which the configuration ut is equal to 1) and we remove 
each cluster independently with probability f ;  as a second step we create particles in 
each empty site independently with probability p. 

This dynamics is similar to a model considered by Swindle and Grannan in [Q] 
although in their model clusters disappear with a rate proportional to their size. 
We will be primarily interested in the  long time behaviour of this stochastic cluster 
dynamics and, in particular, in such questions as ergodicity, approach t o  equilibrium 
and the mixing properties of the invariant measure. I t  turns out that ,  in order to carry 
out this analysis, i t  is crucial to control the range of the interaction namely the typical 
size of the  clusters. Thus we will concentrate on estima.tes of the probability tha t  the  
origin belongs to a big cluster consisting of n particles. In the one-dimensional case 
this probability is bounded by a negative exponential in n for any p E (0 , l ) .  As a 
consequence we can then prove for all p the exponential convergence as t tends to 
infinity of the distribution of the  process at time t to the unique invariant measure 
together with the exponential decay of correlations of the invariant measure. T h e  
proof, based on a novel expansion in spacetime, is quite simple for small values of p 
hut  is non-trivial for p close to 1. 

In dimensions greater than one  the  situation changes radically. For any p E(0, l )  we 
prove tha t  this probability cannot be hounded from above by a negative expouential 
in the number of sites of the cluster. More precisely, if q , ( t )  denotes the probability 
that the cube &, of side n centred at the origin is filled with particles a t  time 1. then 
we prove tha t ,  for suitable constants c l r  c2 ,  a,P if 1 2 c , N ,  we have: 

( 1 . l a )  

( l . l b )  

I t  follows from this tha t  if Pv( t )  denotes the probability that the origin belongs to 
a cluster of volume V,  then P,(l) 2 exp(-V1/d), i.e. a subezponential decay i n  the 
size of the cluster. It is important to understand intuitively the reason behind such a 
striking difference between d = 1 ~ a n d  d 2 2 and particularly i n  the low activity regime 
p << 1 which for other systems does not discriminate between different dimensions. 

For simplicity we illustrate the argument for the two-dimensional case. Among 
many others there are two basic possible mechanisms which fill the square Q, with 
particles at time 1. The  simplest one is to create a particle at each site of Q, at time 
1. This has prohabi1it.y p"'. A more sophisticated way is first to create a particle 
at each site of the boundary a&, at a previous time t' with t - t' 2 n/p and then 
to impose the condition tha t  t h e  cluster of part,icles containing the boundary of Q, 
never disappears for any time s between 1' and t .  It  is easy t o  see that under this 
last condition the cluster containing the boundary of Q, with a probability close 
to one grows under the random dynamics and tha t  it will cover the whole interior 
of &, before time t .  Therefore the probability of this second strategy is only of 
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order (i)(i-i')p4n, namely a negative exponential in n and not in nz3 and the system 
will prefer this second choice over the first one. I n  one dimension both strategies 
have probabilities of the same order of magnitude and the phenomenon does not take 
place. In the case of p close to one the power law bounds (1.16) can be derived by 
a similar argument if one observes that, using results from percolation, a t  each time 
t and with a probability close to one we create an infinite cluster of particles with 
holes whose size grows only logarithmically with their distance from the origin. This 
observation can also be used to prove, in the same range of values of p ,  the ergodicity 
and exponential approach to equilibrium. The same problem for p small is not covered 
by the methods of the present paper. After this paper was completed one of us  (FM) 
envisaged a strategy with which to treat the sw dynamics at  low temperature without 
a magnetic field [lo]. Such a strategy also applies to the present model and proves 
fast convergence to equilibrium and the uniqueness of the invariant measure even for p 
small. The similarity of the dynamics discussed here to the sw dynamics is, however, 
less close than it appears a t  first glance. The SW dynamics is highly non-local, but 
its invariant measure is the standard nearest-neighbour Ising model. By contrast, the 
invariant measure of the present model is (a t  least i n  dimension d 2 2)  not the Gibbs 
measure for a n y  absolutely summable interaction! This follows from the fact that the 
probability (in the invariant measure) of having a square of side N completely filled 
with particles decays subezponenlially in the volume V = N d ,  whereas in any Gibbs 
state measure i t  would have to decay exponentially in V .  Similar results are found in 
ill] for the voter model and in 1121 and [13] for the sign of amassless Gaussian field. 
Our results support the contention of Lehowitz and Schonmann 1111 that invariant 
measures in non-equilibrium statistical mechanics should be expected generically to 
be non-Gibbsian. 

2. The model 

In this section we define more precisely the model that will be investigated in the 
present paper and we will prove some simple general results about it that will be quite 
useful later on. 

Let A = [-I,, I,ld Cl Zd and let CA be the collection of all possible connected 
subsets I of A: Here-I is connected iff for any two sites z and y there exists a path of 
nearest-neighbours sites in I going from x to y. 

Let also { U ( Z , S ) } ~ ~ , , ~ ~ ~  and { F ( I , s ) ) , ~ ~ ~ , ~ ~ ~  be independent identically dis- 
tributed (i.i.d.) random variables with values in { O ,  l }  with: 

P ( v ( z , s )  = 1)  = p P ( ( ( I , s )  = 1 )  = 2 

For brevity a realization of the v ( z , s )  and { ( I ,  s) variables will be denoted by v 
and E respectively. On each site z of A we will associate an occupation variable u ( z )  
taking values in {0, l}; for brevity the collection of the variables ( ~ ( 2 ) ) ~ ~ ~  will be 
denoted by U ,  Thus U is an element of the confignration space S = {O, l}A. Using 
the random variable U, we now construct on S a random dynamics starting at  the 
configuration U at  time t = 0 as follows: 

(i) Given ut E S we set for any .E E A: 
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where I ,  is the maximal element of CA containing z such that ut (y )  = 1 Vy E I .  

F Martinell:  and E Scoppolo 

(ii) For any z E A: 

uf+,(z) = 0 iff u:+;(z) = 0 and v ( l +  1,z) = 0. 

For brevity we will refer t o  (i) as the annihilation of particles and to (ii) as the 
creation of particles. Note that both processes occur simultaneously (i.e. the updating 
is parallel) and that the non-trivial interaction of the model is completely contained 
in the annihilation process. 

We will refer to these rules as the ‘basic dynamics in A’. The associated Markov 
process will always be denoted by ut omitting the suffix A for brevity whenever it does 
not produce confusion. 

It is very easy to check that in any finite volume A there exists a unique invariant 
memure that will he denoted by p,,. 

Later on in this article, when discussing the process’s approach to equilibrium we 
will need to compare the dynamics of a given site z produced by two different boxes 
A and A‘ with A‘ C A both containing z. This will be done by establishing a coupling 
between the two dynamics according to the following rules: 

(a) The variables ~ ( z ,  s ) , ~ , , ,  are exactly the same variables as those chosen for the 
dynamics in A i.e. if a particle is created inside A’ for the dynamics in A then i t  is 
also created for the dynamics in A‘ and v ice  versa. 

(b) The value of [ ( I ,  s) is the same for both dynamics if I C A’. 
In some sense this coupling is the most natural way to restrict the dynamics in A 

to A’. 
In one dimension, however, there is a more efficient way to realize this coupling 

in such a way that the value of the process at a given site I inside A’ will always be 
equal for the two dynamics. Rule (a) remains unchanged while (h) becomes: 

(c) w, S) = E(I n A‘, s). 
In other words a cluster I will disappear or stay according to whether its restriction 

to A’ disappears or stays. Clearly such a rule is consistent only in one dimension since 
in higher dimension I n  A‘ may consist of more than one cluster. It is important to 
realize that this construction of the dynamics in A produces a random flow on S that it 
is different from the ‘basic dynamics in A ’  without, however, affecting the probability 
of any event since the probability of annihilating a cluster does not depend on its size 
or shape. 

In one dimension we will always make this last choice. 
A nice consequence of this coupling is that in one dimension there is always a 

unique invariant measure p for the infinite volume process. 

Theorem 2.1. 
(i) Let A be the finite interval [-L,L] n Z, let p A  he the associated invariant 

measure, and let RA he a cylindrical event in S depending only on the value of the 
configuration U in A C A. Then: 

(ii) For any p E ( 0 , l )  there exists a unique invariant measure for the infinite 
volume Markov process with A = Z. 
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Proof. 
(i) We use the coupling (a) and (c) with A' = A. It follows that U:(.) = 

U!(.) VZ E A. Thus the result follows trivially. 
(ii) Because of (i) on any cylindrical event any infinite volume invariant memure 

coincides with the finite volume invariant measure and therefore the result follows. 

We conclude this section with a final result valid in the one-dimensional case which will 
be most useful in the next section when we will prove the basic probabilistic estimate. 
Given a subinterval A of A and a time interval [0, t ]  we denote by 02't1 an arbitrary 
event that depends on the process u*,(z) only for s' E IO,t] and z E A. In general s' 
may be any integer or half integer between 0 and t .  

Theorem 2.2. 
C. Then for any initial configuartion U :  

Let A,  B,C be disjoint subintervals of A such that B separates A from 

Proof Let us choose the following generalization of the coupling (a) and (b') among 
the dynamics in A and the dynamics in A' = A U C :  if a cluster I C A intersects A ( C )  
but  not C ( A )  then it will be updated exactly as I n A  ( I n C ) ;  in all the other cases the 
updating is as in the basic dynamics in A. Clearly under this coupling the probabilities 
of interest for us are unchanged. Moreover if us(.) is such that Vs 6 [0, t]3z  E B such 
that U,(.) = 0 then it is quite clear that: 

u s ( z )  = u:(z) VZ E A 

and the same for C. Thus: 

where we have used theorem 2.1 

3. A basic probabilistic e s t i m a t e  

In this section we will establish a basic probabilistic estimate that will allow US to 
derive in the following sections a series of interesting results on the unique invariant 
measure of the process and on the rate of approach to equilibrium. The result is stated 
in the next theorem: 
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Theorem 9.1. 
for any integer n: 

F Marlinelli and  E Scoppola 

For any p E (O,l).there exist positive constants m(p), C ( p )  such that 

supP(o,(z)  = 1 Vx E [ ~ , n ] )  5 C(p)exp(-m(p)n)+ n2-' 
0 

Proof. For brevity let R(,,,) be the event considered in the theorem and let us pre- 
liminarily note that the event involved in the theorem depends only on the process 
For z E i i , n ] ,  Tnen, using theorem 1.2, we may restrict the dynaniics to the inter\ial 
[ l , n ]  avoiding possible problems caused by the infinite volume. 

We now turn to the proof of the theorem. Whenever otherwise specified all the 
estimates on the probabilities of various events of interest for us will always be uniform 
in the initial configuration. As a warm up let us first discuss the easier case p << 1. 
The general case will be proved by a very similar argument after collecting variables 
into blocks of suiiah:e sise, 

Let for any x E [ I ,n ]  

h(z)=sup(sE[O, t ] , sEN;o , - , , (z )  = ~ I - - , , - , j Z ( t ) = l V ~ ' ~ ~ - l ) .  (3.1) 

Clearly if the process oI is such that,  a t  time t ,  oI(z) = 1 Vz E [1,n] then the 
variables h(t) are well defined. A generic realization of the random variables (h(z))E=, 
will he denoted by 7 .  

Clearly 7 can he looked upon as an histogram (see figure 1). 

t l  2 3 

Figure 1. 

We will denote by rt the class of graphs 7 such that their maximum height is less 

We will now estimate P(Rn,,) by 
than t .  

P(Qn,,) C P(R,,, fl { ( /~ (z ) )z=~ = 7 } )  + P(3z with h ( z )  = t ) .  (3.2) 
Tcre 

The second term on the right-hand side (RHS) of equation (3.2) is easily estimated 
by 

nP(a,(O) = U , - * ( O )  = I tJs 5 1 )  5 n(+)'. (3 .3)  
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We now estimate the first term of (3.2). For a given curve y let L be its total 
length, let V be its vertical length so that L = V + n, let k be the number of right 
angles in the curve and P1, . . . , Pk be their positions measured as we move along the 
curve. Note that since any right angle has one horizontal side then k cannot exceed 
(2n A L) .  We claim that for any y E F t  we have: 

(3.4) n 1 v/2 
W " , I  n {(h(Z)K=l = 71) 5 P (7) 

Proof. By construction, for any Z, we must have created at  2: at  time t - h ( z )  > 0 
a particle that  has  lasted up to time 1. Since the process of creating the particles is 
uncorrelated in spacetime we obtain the factor p". Now let for any half integer time 
s, smaller than snp,(h(+)),n(s) be the number of intersections between y and the line 
s = constant. It is easy to check that E, n(s) = V .  By construction, if {h(r)} = y 
then for any such s we have n(s)/2 clusters that do not die and this last event has 
probability 

( 3 . 5 )  1 Cn(*)/z = 1 V / Z  (i) (5) 
and (3.4) follows. 

We can now estimate CTE,., P(Ci,,,, fl {(h(z)):=, = y]) by 

The factor 2'1' in (3.6) comes from the fact that a t  each right angle after a 
horizontal step the graph can either increase or decrease. Since k 5 2n we estimate 
the RHS of (3.6) by 

L 
p n / z  c C ( k ) 2 k / z p k / 4 ( ~ ) ( L - n ) / 2  = P n/z E(?) 1 ( L - " ) / z  ( I  + (&P'/-l))L (3.7) 

L z n  k = 1  L?" 

which for p small enough is bounded above by 

P"'Z(1 + ( J Z P ' / 4 ) ) " C ( P )  

for a suitable constant C ( p )  independent of n. The assertion of the theorem in this 
case follows with m ( p )  = - log(p'/2(1 + ( ~ 6 ~ ~ 1 ~ ) ) .  

We now turn t o  the general case with p arbitrary. When p i s  not sufficiently small 
the expansion previously given no longer works. To extend the result to p close to 1 
the objective is to replace single sites by blocks of length I and to perform the previous 
expansion over the blocks. The key ingredient is that, upon renormalization, we will 
be able to associate, for a sufficiently large number of blocks, a weight p ( / )  which goes 
to zero as the length I of the blocks diverges. It will turn out that in order to obtain 
a convergent expansion we will need to take 1 = k/ ( l  - p )  with k a large constant 
independent of p .  

Definition 1. 
%,t  theevent {ut(.) = 1 Vz E Bi i = O , . .  . , n , ] .  Note that 
with (3.1) we will associate with each block Bi a height h(i) defined by: 

h(i) = SUP(S E [ O , t ] , s  E N ; u ~ - ~ , ( z )  = u ~ - ~ , - ~ / ~ ( z )  = 1 VZ E B,,Vs' 5 S -  1). 

Let for / E N n, = [n/q and let Bi = [il, (i+ 1)q n Z; we will denote by 
In analogy C 

(3.9) 
A generic configuration of the random variables { h ( i ) } i = l , ,  ,nl will be denoted 

by Y. 
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Definition 2. 
where d ( i )  = min{j > i; h ( j )  # h ( i ) } .  

F Martinelli and E Scoppola 

(a) i is a relative maximum for y iff h(i - 1 )  < h ( i )  and h( i )  > h(d( i ) )  

(b) i is a terrace for y iff h( i  - 1) = h ( i )  = h ( i +  1) .  
(c) i is a local minimum for 7 iff h( i  - 1) > h ( i ) ,  h ( i )  < h ( d ( i ) ) .  

Definition 9. We denote by r = r(i, . . .  i k ; j  , . . . j k ; p l  . . . p , ;  Al...Ak;A; ,..A;; 
h, . . . h,)  the set of curves 7 such that: 

(1)  y has exactly k relative maxima at  i, . . . ik,; 
(2) 7 has exactly k + 1 local minima at  j ,  . . , j X ;  

(3) 7 has exactly q terraces a t  p ,  . . . p ,  with corresponding heights h ,  . . . h,;  
(4) Ni,) - hb',+i) = Aim; 
(5) h( i , )  - h( j , )  = Ai,,,; 
(6) supi h(i)  5 t -to(/) where t ,(l) = (41 log(1 - p)I)-'log(l) (see figure 2). 

I I-- h'-p-l 
t 

8. I 

Figure 2 .  

We will now estimate P(fin,l) by 

P(fin,t) 5 P(fin,,t) I cc c c c 
t n (io..,i,;;o,,,;k) (p! . . , p q ) (  Al...Ak;A;...A;)h~...hq 

x ~ ( f i , , , ,  n 17 E r)) + ~ ( s u p h ( i )  > t - to ( / ) ) .  (3.10) 

The second term on the RHS of (3.10) is estimated as in (3.3) by 

n(l)( y o ( ' ) .  

The following result, whose proof is for simplicity postponed to the appendix, will 
allow us to evaluate a limit for the first term on the RHS of (3.10). 

Lemma 9.1. 
there exists a positive constant m(l ,p)  such that: 

For any p E ( 0 , l )  there exists /(p) > 0 such that for any  I E N ,  1 > I(p)  

Furthermore m(/ ,p)  -+ 03 as I -+ M. 
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For simplicity we define m' = m ( l , p ) / 2  and 'no = -log(2)/4. By using lemma 3.1 
let us estimate the RHS of (3.10). To do that we first make the following elementary 
observations: 

Remark 1 .  If we denote by n;, n:) i = 1 . . . E ,  the number of terraces of y between 
j , - , ,  ij and i;, j i + l  respectively, then the sum over the heights h ( i ) ,  i = 1 . .  . q ,  in 
(3.10) can he estimated by 

This is so because for the ni terraces in bi, i i ]  the heights are constrained to he 
non-decreasing and to lie between h ( j , )  and h(i ,) .  

Remark 2. C i ( A i + A : )  2 n,  - g/Z. To prove this simple inequality one first observes 
that this sum represents the total vertical length of the cnrve y; moreover any block 
Bi which is not a terrace has  a t  least one neighbour with a different height. Thus the 
lateral length has  to be bigger than the half of the total number of blocks minus the 
terraces. 

With these observations in mind and using lemma 3.1 we obtain: 

(3.11) 

The RHS of (3.11) is now easily estimated if we note that 

for a suitable constant c(mo). The final result is: 

5 exp (-?no (3.12) 

if rn'(1,p) is large enough. 
Clearly this estimate proves the theorem since n,  2 n/l - 1 
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4. Convergence to the invariant measure 

We briefly discuss in this section the convergence of the distribution of the process at 
time t to the unique invariant measure of the process as t tends to infinity. 

To he precise let f : {O,l}' -* R he a cylindrical observable and let S, C Z he the 
smallest subset of 2 such that f does not depend on the values of the configuration U 

outside S,. There is no loss of generality in assuming that S, = [0, L]. Now let A he 
such that [0, L] C A. We want to study the time behaviour of the quantity: 

F Marlinel l i  and E Scoppola 

f , ( t )  = lEof(u:) - pA(f)l (4.1) 

where as before E,f(u:) and pa(f) denote the expectation value o f f  over the basic 
dynamics in A and with respect, t,o the icvariant, m-eaure in A respectivelyl The decay 
property of this quantity as t -, CO may provide a measure of how fast the process 
reaches its invariant measure. 

As explained in section 1, this quantity does not change if one replaces A with the 
interval [O,L]; therefore from now on we will take A = [0, L ] .  

As we have already noticed in the previous section, by standard arguments for 
Markov chains with a finite number of states i t  follows that p r ( t )  decays exponentially 
to zero as t tends t o  infinity. More precisely there exist two positive constants Cf,L 
and mL such that 

5 C / , L  exp(-m,t). (4.2) 

We want to show that for any p the decay constant mL can be chosen t o  be 
independent of L.  More precisely we will prove: 

T h e o w n  4.1. 
such that for any t 2 a ( p ) L  we have 

For any p E ( 0 , l )  there exist two positive constants m(p) and a(p )  

P j ( t )  5 SUP If(u)l exp(--m(p)t). 

Proof. Using the invariance of the measure p,, we estimate p ,  ( t )  by 

p f ( t )  5 SUP IE,,f(u;) - E,,f(q:)I. (4.3) 
0 . q  

We now couple the two dynamics starting from U and 7 in such a way that with 
large probability after a time proportional to L they will become identical. The 
coupling goes as follows. 

(i) At each time s 5 1 we use exactly the same random variables v(z, s) f ( s ,  I) for 
both evolutions. 

(ii) Let z(s) he such that u S ( z )  = q8(z) Vz 5 z(s) and ud(z(s)+  1) # ~ , ( z ( s ) +  1)  
provided that z(s) 5 L - 1. z(s) may not exist. If such an z(s) exists then for any 
cluster I containing z(s) h u t  not entirely contained in [0, z(s)] we replace the variable 
((s, I )  with the variable E ( s ,  I n [O,z(s)]). 

It is easy t o  check that these rules are indeed a coupling and that the sites Z(S) are 
non-decreasing in s, i.e. z(s+ 1) 2 ~ ( s ) .  I t  is also clear that if a t  time s z(s) does not 
exist and ai iime s+ i a particie is created ai tine origin then necessarily Z ( S +  1) 2 1. 
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Moreover given z(s) the probability that z(s+ 1) is a t  least z(s) + 1 is greater than p 
since the same particles are created a t  the same time for both the evolutions starting 
from U and 7. Therefore the site z(s) moves to the right with an average velocity a t  
least p. Standard large deviation estimates together with the strong Markov property 
now easily give that 

SUP P ( z ( t )  < L )  5 exp(-m(p)t) (4.4) 
027 

for a suitable constant m(p) > 0 provided that t is, for example, greater than 2L/p. 
Since the RHS of (4.3) is estimated by 

SUP If(4lSUPP(”(t)  < L )  (4.5) 
n *,n 

the theorem follows. 0 

Remark. It follows from this result that the typical time scale needed to reach equi- 
librium in an interval of size L is a t  most proportional to L. For p small, the mnltiscale 
technique developed in [i’] to study the same problem for the SW dynamics for the 
Ising model provides a much better result namely a power of log(L). We actually 
believe that this result should hold for all p but we have not been able to prove it. 

5.  Decay of correlations for the invariant m e a s u r e  in the one-dimensional 
case 

In this section we use the basic probabilistic estimate proved in section 2 to show that 
connected correlations of the unique invariant measure decay exponentially in the one 
dimensional case. 

Let A and E be finite intervals of lengths IAl and IBI separated by the interval D 
of length L. Let also f and g be local observables depending only on the value of the 
configuration u ( z )  for z in A and in B respectively and let I fl, denote the sup norm. 
We will write ( f ;g)  for the expression: 

I d p  (u)f(s)g(u) - ( I d p  (u).f(o)l ( I du (u)_a!u)). (5.1) J \J 1 \J 

Then we have: 

Theorem 5.1. 
such that for any L > L(p, /AI, IBI, f , g ) :  

For a n y p  E [0,1] there exist positive constants nd(p), L(p, \AI, IBI, f, g) 

(f;d 5 exp(- ,4p)L)’  

Remark. 
between A and B 

The constant L ( p ,  IAl,lBl,f,g) does not depend on the mutual distance 
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Prooj We first recall the result proved in the previous section: in any finite volume 
A the basic dynamics, uniformly in the initial configuration, after a time proportional 
to the length L of A ,  approaches the invariant measure corresponding to that volume 
exponentially fast in time with a rate X independent of L.  In other words: 

F Martinell i  and E Scoppoln 

SYP IE,f(.,) - / dpA (n)f(nr)l 5 Ifl, exp(-Xt) 

( f i g )  = , I iEEg[f( . f )S("t) l  - (Jdlr( . ) f (n))  ( J d P ( 4 d U ) )  

(5.2) 

for any t > c(p)L where c(p) is a positive constant. 

to be chosen later on. We write: 
Now let m(p) be the positive constant of theorem 3.1 and let T = kL, with k > 0 

(5.3) 

The second term on the RHS of ( 5 . 3 ) ,  because of theorem 1.1, is equal to 

(5.4) 

where pA is the invariant measure for the basic dynamics restricted to A and the same 
for p B .  In order to compute the first term let us denote by 11: or rf the process a t  
time s E [ O , q  evolving with the basic dynamics in A or in B starting at s = 0 from 
the configuration ut-T reached by the basic dynamics in Z at  time t - 7'. The same 
simple argument used in the proof of theorem 1.1 shows that 

SUP I E, [f(.t M.t )I - E, 'e:: [f(d ) s ( d  )I I 

5 2 ~ f ~ , ~ ~ ~ m ~ ~ p P ( 3 ~ E [ t - T , t ] ; u , ( r ) = 1 V z E D )  ( 5 . 5 )  
0 

where E A U B  denotes the expectation over the basic dynamics in A and in B. Note 
that by construction EAUB()  is a product measure E A ( ) E E ( ) .  

In turn, using theorem 3.1, the RHS of (5 .5 )  is estimated by 

k ~ [ ~ ( p )  exp(-m(p)L) + z-(,-~)] (5 .6 )  
with C(p) and m(p) as in theorem 2.1 

Moreover, using ( 5 . 2 ) ,  

1 Eow AuB[f(d)g(q$.)l  - JdPA (')f(u) J d P B  ( . ) g ( l r )  1 
5 lflmlslm exp(-XkL) + Igln?lflm exp(-XkL) ( 5 . 7 )  

uniformiy in the configuration provided that ki is greater than c(p)jAj and 
C(P)IBI. 

( f ig)  5 k ~ , [ ~ ( p ) e x p ( - m ( p ) ~ )  + 2-('-T)I 

Putting (5.3)-(5.7) together we finally get 

+ Iflmlglmexp(-XkL.) + Iglmlflm exp(-XkL). (5.8) 

I t  is clear tha,t, hy taking the constant k large enough depending on X we can 
find a constant L = L(IA(,IBl ,p , f ,g)  such that for all sufficiently large 1 and for all 
L 2 L(lAl , lBl ,p ,  f , g )  the RHS of ( 5 . 8 )  is less or equal than: 

exp(-m(p)LD) 
and the theorem follows. U 
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6. The multi-dimensional case 

In this section we will analyse in detail the d-dimensional case, d > 1;  for simplicity 
we will mainly discuss the case d = 2 but the same arguments apply to any d 2 2. As 
we will see for d > 1 the model becomes much more involved than the  one-dimensional 
case and new kind of behaviours for the quantities of interest for us will appear. 

Let us first give some notation: we will denote by !Cl the cardinality of a cluster 
C and by aC the set {x E C ; 3 y  $! C with Iz - yI = 11. As in the one-dimensional 
case, we will first estimate the probability of having a large cluster completely full of 
particles because of the important role played by this quantity. We denote by Q, the 
square of side n on the lattice , Q, = [1,nI2, and we define the event: 

fin,, = {U,(.) = 1 for any x E Q,}. (6.1) 

As it will he clear later on, we now have to use completely different techniques from 
those used in the one-dimensional case. In particular, even for very small values of p ,  
an estimate of P(Cln,t) cannot be obtained by means of an expansion in skyscrapers 
like the one used in the one-dimensional case. If such an expansion could work than 
i t  would imply an upper bound for the probability in question exponentially small 
in the volume of Q, i.e. in n 2 .  To our surprise, however, it is possible t o  prove (see 
section 6.1) a lower bound which is only exponentially small in n for all p !  In section 6.2 
we will greatly improve such a bound for p close t o  one, to obtain upper and lower 
bounds for P(Qn,,) which decay only as a certain powers of l / n .  

6.1 .  Bounds on P(Cln,,) valid for all p 

We begin by proving a lower bound: 

Theorem 6.1. 
we have 

For all p E (0 , l )  and n > 4 let T ( n , y )  = 4n/p; then for all t > T ( n , p )  

P(fi",,) 2 P5n(+)Xn'p (6 .2 )  

for some positive constant k 

The  idea of the proof is very simple: a t  time t - T ( n , p )  we create 4n particles on 
the boundary of Q, and then we impose the condition that these particles survive for 
a time T(n ,p ) .  The  probability of this event is clearly only exponentially small in n 
We will then show that ,  for n sufficiently large, if the cluster formed by the particles a t  
the boundary of Q, survives for a time as long as T(n ,p ) ,  then it is able t o  propagate 
inside Q, and to fill it up completely with a probability not smaller than a negative 
exponential in n. 

Proof of theorem 6.1. We define the following event: 

e,,, = {U,(+) = 1 Vx E a$, and Vs E [ r , t ]  ((C,(s),s) = I}  (6.3) 

where C,(s) is the cluster a t  time s containing aQ, 
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For each realization of the dynamics satisfying Or,l we have that Ca(s )  is well 
defined for all s 5 t and that the number n(s) of particles in Ca(s) is a non-decreasing 
function of time: 

n(s + 1) 2 n(s). 

We now introduce events that  force n(s) to increase at  a certain rate: 

P 
2 

rr,, = {O,,, holds and V6 E ( r , t ]  n(s) 2 n(s - 1) + -Jn2 - n(s - 1) 

if n(s - 1) < n2 - n}. 

The probability of the event rr,, is estimated by 

Lemma 6.1. 

p(rv,t) 2 p4n[4(1 - e - ' ~ f i ) ] ' - ~  

where cp is a constant proportional t o p  

Proof of lemma 6.1. 
property. We write 

We will estimate P(r7, ')  recursively by means of the Markov 

W , , t + i )  2 E[x(rr , t )  . , ; r~fh~,d .EO,~(E(Ca, t  + 1) = 1) 

x(n(t  + 1) 2 n ( t )  + ;,/- if n(t) < n2 - n)]. 
(6.4) 

If we now denote by E,  the set 

{Z;Z Ca(t) and 3y E C,(t); 12. - y1 = 1)  

we have the following simple geometric estimate proven later (see lemma 6.2): 

IBtI = lO(Q,\ca(t))l 2 m. (6.5) 

Moreover a simple exponential Chebyshev inequality shows that 

P (in B, we create a t  least -LE , [  particles a t  time t )  2 1 - e-cp'Bl' 

where cp is a constant proportional t o p  ( c p  2 p/12) 

(6.6) P 
2 

Now using (6.5) and (6.6) we can estimat,e from below the RHS of (6.4) by 

p(r,,l)(;(i - e-".fi)) 

If we now iterate the above lower bound I - I. t,imes and observe that 

P(O,,,) 2 P4" 

we get the lemma, It remains to prove (6.5). This in turn follows immediately from 
the definition of B, and the next lemma: 
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Lemma 6.2. Let us define 

Then 

f(n) 2 4 f i  - 7 
and, for n > 5, this implies f (n)  > 6. 
Proof of lemma 6.2. Let / be such that I* < n <_ (I + 1)'; then 

if 1' < n 5 /(/ + 1) 

if / ( I+  1) < n 5 ( I +  1)2 

f(n) 2 41 - 3 

f(n) 241-  1 

that is 

f (n)  2 4(/  + 1) - 7 2 4 6 -  7. (6.8) 

In order to complete the proof of the theorem we need first to discuss the cotise- 
quences of the recursion inequality n(s) 2 n(s - 1) + p / Z d n 2  - n(s - 1) implied by 
the event Pr,[. I t  is trivial to verify the following: 

Lemma 6.3. The inequality 

n( t  + 1) 2 n(t)  +Ad- 
C, A > O,B > C 2 0, implies that n ( f )  is increasing for f 5 t' = 

B = n? and C = 4n we can conclude t,liat 

$ and n( t* )  2 E .  

If we apply the lemma 
n(t) is increasing for t < $ and it  is equal to 71' - n for some 

t < ( 4 / p ) d X - z  < T(n,p) .  (6.10) 

We can now complete the proof of the theorem. Using lemmas 6.1 and 6.3 and 
the strong Markov property we get 

p(%$ 2 p(nn,! n rt -T(n,p)-L, t - l )  2 p4n[$(1 - e - C ~ J i i ) I T i n , p l ~ n  

which concludes the proof of the t,heorein. 

We now turn to the proof of an upper bound. Let for all p E (0 , l )  t (n )  = alogn 
with (1 = 41log(l -p)I-'. Then we have: 

Theorem 6 .2  
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Proof of theorem 6.2. 

A, E {3 a connected cluster C C Q,; u,(x) = 1,Vx E C and IC1 > nz/2} 

next we write: 

F Mardinelli and E Scoppoln 

We define the  following event: 

(6.11) 

The  second term in the RHS of (6.12) can be estimated by  exp(-n'l2). In fact the  
set 

D t - t ( n ) =  {z E Qn; ut-t(n)(z) 01 (6.13) 

contains at least n points, otherwise At-t (nl  would be true, and it must be filled of 
particles within an  interval of t ime of length ?(n) for On,! to hold. The  probability of 
this last event is given by the following lemma: 

Lemma 6.3. Let s _< ulogn and  let D C Z 2  with ID! 2 k 'n  then 

sup P(u,(z) = 1 Vx E D) 5 exp(-dn"*). (6.14) 
o;oo(rj=O,VzED 

We now turn to the estimate of the first term of the RHS of (6.12). We write 

P(Q",t n *l-t("j) = W",, n At-*(") n := t -T(")  A s )  

+ P(Qn,< f lA, - , , , , , f l  {3s E ( t -  T ( n ) , t ] ; A ,  does not hold)). (6.15) 

If we observe tha t  in the square Q, there is at most one connected cluster C 
with IC1 2 n2/2 completely tilled with particles at any given time s, then the event 
described in the first term in the  RHs of (6.15) implies that  the cluster of size greater 
than n2/2 which was present at t ime t - T ( n )  did not die out for a time interval of 
length T ( n ) .  The  probability of this last event is bounded by ( $ ) T ( " j .  The  event 
described in the second term of the RtlS of (6.15) instead implies tha t  at some time 
s between t - T(n)  and t a cluster in &, of size greater than n2/2 died out hut t ha t  
nevertheless it has been filled with particles within time t .  T h e  probability of this last 
event is again estimated via lemma 6.3 to get the bound exp(-k'n*). The  theorem 

0 now follows from the definition of T(n) .  



A simple sfochastic cluster dynamics:  rigorous results 3151 

6.2. Bounds on P(fi& valid fo r  p - 1 

For p sufficiently large the estimate given in theorems 6.1 can be improved. We have 

Theorem 6.3. There exists a constant k sufficiently large such tha t  for any p > PO 
and for any t > 2T(n)  where T(n)  = 4 /po logn  we have 

where a 2 4/11og(l - p)] and po is the critical probability for site-percolation in two 
dimensions. 

Sketch of the  proof of the theorem 6.3. 
time t 

By the  definition of our dynamics at each 

{.;ut(.) = 1) 2 { z ; v ( t , z )  = 1) (G.16) 

and  therefore we can estimate our configuration with a configuration of the  sit.e- 
percolation model. As it is well known (see e.g. [14]) for this last model there ex- 
ists a critical probability po such that for p > p o  with probability one there exists a 
unique infinite connected cluster of particles wi th  'holes' which are large only with 
small probability. 

This enables us to conclude tha t  at each time, with probability one, there exists 
an  infinite cluster of particles C,  and with probability larger than 1 - 7 ~ - 0 ( ~ )  the sites 
contained in the square Q, which are not in C, is a union of disjoint sets (holes) each 
one of size smaller than a log n , where a > a ( p )  with a ( p )  - 0 as p - 1 and p - 00 

i f a - c o .  
The  strategy now follows tha t  used in the previous section: we impose that the 

cluster C, which is present at the initial time t - 2T(n) survives for a t,iine 2T(n) so 
tha t  each hole present at time t - 2T(n.) shrinks during the time interval [t - 2T(n), 
t -T(n)]  by the same mechanism explained in  theorem 6.1 i n  such a way that at time 
t - T(n)  each cluster of empty sites inside Q,, consists of at most constant x log(71,) 
sites. These remaining empty sites cannot be  filled wit,h particles in one step witlioiit 
paying too much in the probability but they can be eliminated in the last time interval 
[f - T(n),t] by  a simple procedure with probability close to one because of our choice 
of T(n). 

The  implementation of these ideas is straighforward but quite lengthy and technical 
and we therefore decided to skip it.  

7. E r g o d i c i t y  in the case of large p 

In this section we study the problem of co~ivergence to equilibrium atid uiiiqricnrss of 
the invariant measure in two dimensioiis for p close to one. We wil l  work directly 011 

the infinite lattice. For large values ofp,  at. each time t ,  an infinite cluster of particles 
will he present since this already occurs for the independent process that creates the 
particles. Using standard results from percolation (see e.g. [IO]) it follows that the 
infinite cluster will always be unique with probability one for each Lime t .  

Our main result is the following: 
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Theorem 7.1. There exists po E ( 0 , l )  such tha t  for any p 6 (po ,  11 there exists a 
unique invariant meamre p for t h e  process; moreover there exists a positive constant 
7 such tha t  for any cylindrical observable f we have 
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SUP I / d p ( v ) f ( q )  - E,,f(ul)I 5 C, exp(-7t) (7 .1)  

where C, is a suitable constant depending on f. 

Proof. As is well known in the theory of stochastic particles systems the result follows 
if we can prove tha t  for a suitable coupling there exists po E ( 0 , l )  such tha t  for any 
p E (po ,  I] there exists a positive constant 7 such tha t  

We will therefore restrict ourselves to the proof of (7.2). The  coupling tha t  we will con- 
sider is the usual one, namely t h e  same realizations of the random variables {.(., t ) )  
and { ( (C, t ) }  are  used to construct the  basic dynamics for any initial condition, with 
only one extra rule: 
If C,  and C, are  two different infinite clusters of 2' then ((Cl, t )  = <(C,,t) .  
This rule is compatible with our  definition of the  basic dynamics since at each t ime t 
and for any given initial configuration U the infinite cluster in ul is unique. 

Because of the definition of our coupling the event U [ ( . )  # rit(x) implies tha t  one 
of the following two events occurred: 

(4 Ul-l(.) # ql-l(z); or 
(b) ut- , (z )  = qI-l(z) = 1 a n d  in this case, if we denote by C(u , z )  (C(q, z)) the 

clusters of particles containing z at time 1 - 1 for the configuration U and q, we have 
C(u,z) # C ( q , z )  and at least one of the two clusters say C ( u , z )  is finite. In both 
cases we can define a point a t  which the configurations are different at time 
t - 1, in the  following way: 

(i) y1- ,  = z in the  first case; 
(ii) yl-,(z) is such tha t  ut-l (yI- l )  # q * - ] ( ~ , - ~ )  and there exists a point L E 

C(u,z) such t h a t  ( z  - yl-]1 = 1.  Such a point exists since C(u,z )  is finite and 
C(u ,z )  # C(q, 2). This implies t ha t  if we denote with p ( t )  = sup,sup,,, P ( u I ( z )  # 
qI(z)) then we have the following inequality: 

p ( t ) <  Z s u p s u p P  ( 3 y s u c l i t h a t  I z - y l =  R a n d y , - l ( r ) = y n u I ( z ) # r ~ l ( z ) )  
R>O ' ""l 

where A ,  is the event: 
A ,  = {3 a closed loop of nearest neighbour sites around z,r, with Irl > L 

such that v ( t , z )  = 0 Vz E r}. 
Standard results of percolation theory give the estimat,e: 

P(A,) < e - k ( p ) L  

with k ( p )  + 00 as p + 1. 
Thus  for p sufficiently close to one we ohtain the recursive inequality: 

P ( t )  5 OP(t - 1) (7.4) 
with < 1. I t  is clear tha t  (7.4) proves (7.2) and thus the theorem. U 
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Appendix. Proof of lemma 3.1 

A l .  Proof of ( i )  

Let us  order in increasing order the heights h ( j )  of the curve 7 defined in (3.9), as 
follows (see figure Al): 

(a) b ,  = minj(h(j)) 
(h) k ,  = minj(h(j);h(j) > A i - , )  
(c) C; = {the set of maximal intervals J such that V j  E J h ( j )  2 h,}. 

I c + c 
c> c3 

Figure Al .  

We remark that by construction Cj C C,-[ and that the elements of the class C, 
resist up to time t and they are separated one from the other by an interval formed 
by an integer number of blocks of length 1 which is never totally occupied during the 
time interval [ti , t , -J,  where ti = t - hi and by convention t ,  = t .  Let 11s define Pj as: 

P.  I = P(ni2,{each element I E C; is never killed between l i , t i - l  

and any two elements in Ci are separated hy an interval that 

is never totally occupied during the time interval [ t i , t i - l ] ) ) .  ( A . l )  
'Then cieariy f: is an upper bound for Pin,,,,, f l  { r  E rj j .  Now iet ci denote the 

cardinality of C, and let X i  denote the set of configurations U such that a t  time t i  they 
are identically 1 on each element I of C, and have at least one empty site between any 
two elements of C,. Then, using the Markov property, we can estimate Fj by 
Pj 5 Pjtl sup P,,({each element I E C, never die between t j , t j - ]  

*€E, 
and any two elements in C, are separated b y  an interval that 
is never totally occupied during the t ime interval [ t j , t j -J})) .  (A.2)  

Now using theorem 3.1 the last factor in the RNs of (A.2j is bounded by 

( ~ ) C I ( * , - r i i )  (A.31 
and the.refore by iteration: 

(A.4) p < ( i ) z c ; ( i ; . . , - i ; j  
1 -  a 

If one observes that - l j )  is equal to the lateral length of 7 and that this 
last one coincides with C&Ai  + Aj)/2 (see remark 2) we conclude that (A.4) proves 
6 )  of !c.??mii 3.1. 
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AZ. Proof of ( i i i )  

I t  simply follows by taking the geometric mean of (i) and (ii) 

A J .  P m o f  of ( i i )  

We first establish some simple results t ha t  we will need in the course of the proof 

Definition. 
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For any integer 1 we set: 
(i)  to(1) = (4jiOg(i -6)jj-1iog(r). 
(ii) Po(I) = P ( U ~ ~ ( ~ ) ( Z )  = 1 V i  E [l, [ 1 /3 ] ] )  and P(1) = sup,, P o ( f ) .  
(iii) n(1) = P(Vx E [ l , i ]v(x , s )  = 1) for some s E [l ,2to(/)] .  
We have the following simple results: 

(‘4.5) 

Lemma A.1 

lim P(1) = 0. 
I-m 

Proof. We take I very large and we consider separately two different cases: 
(I) There mists z. ” c - - I -  112 - !1/2 such t,bat, ~ ( z )  = I Vx E [zo; zo + P / 2 ] .  

(2) There exists no zo satisfying this requirement. 
In the  first case we estimate p,(l) by 

Pg( l )  5 P ( x o  never dies before to(/)) + P ( { 3  5 t,(l);tlre cluster containing 

xo is killed at time s} n {ulo(lj(x) = 1 Vx E [l, [ 1 / 3 ] ] ] )  (‘4.6) 

note tha t  the cluster containing zo has length greater than 1”’ before it is killed. 
Therefore we can estimate the RHS of (‘4.6) by 

( $ ) * O ( l )  +to(l)II(l”’) 

and in this case the lemma follows. 0 

In the  second case we have t,liat at the  initial time n contains m empty sites, with 
m 2 1 ’ / ’ .  Therefore 

%(I) 5 n(m)  5 n(1) 

and the iemma ioiiows. E 

Now let E, ,  , . , , E,, he hlocks of length I such that d i s t (E i ,  E,) 2 21 i # j and 
let t i , .  ..,in be integer times such tha t  t i  2 to(/) where to(l) is as earlier and let E+ 
and 8,- be the right neighbour block and the left neighbour block of Bi. Let also n, 
denotes the event: 

ai = {Ei is totally filled with particles at time ti andB+,  E,- 

contain at least, one empty site at h e  t i  - ?}.  I (A.7) 

Then we have 
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Lemma A.2. For any p E ( 0 , l )  there exists /(p) > 0 such tha t  for any 1 > / ( p ) :  

SUP P,(ni=I ... " Q i )  5 f(9" 

h i t h  lim,-m f ( l )  = 0 

Proof. Without loss of generality we may assume tha t  / is an  integer multiple of 3 
a n d t h a t t , > t i i = l  . . .  n - k - l a n d t , = t , - l = . . . = t , - k .  N o w l e t ~ , = t , - t , ( / )  
and let I = {i 5 n - k - l ; t i  2 in]. Using the Markov property we can write 

We will prove tha t  

Qj c QJ U Qy V i  = 11 - k, . . . , n (A.9)  

where Qi is a local event depending only on the variables U($, s),{(Z,s) for (z, s) and 
(Z,s) strictly contained in (ET U E; U E,) x [{ , , , t"] ,  and a;' has a simple estimate 
for i ts  probability. In order to simplify the notations we will now denote by $Bj 
2B. 3B. the first third, the middle third and final third of the block E, respectively. 
Given an  interval [Q, b] we will also define the dynamics in [a, b] with 'full boundary 
conditions' as the  basic dynamics in [a, b] with the  constraint tha t  clusters containing 
either Q or b o r  both  never disappear. I t  is quite clear that  in [a, b] we can couple 
the  two dynamics in such a way that the  process evoiving with the dynamics with 
'full boundary conditions' will always contain at least the same particles as the usual 
process evolving with t h e  basic dynamics. 

3 1 3  J 

In these notations the  event Q;', ,Cl; are defined as follows 

s27 = {$Bj is filled with particles at t,ime tn}  n ( { E ;  U iB,} w a s  never completely 

occupied with particles between in and t ,  - 1) n {{BF U $ E j )  was 

never completely occupied with particles 

between in and 1, - 1) (A.lO) 

C l ;  = {3f, < sl < s2 5 t , ;  one of the blocks E,:, E,:, : E i ,  1 ,  :E;  

is filled with particles at time s? start ing empty at time sl 

by the dynamics with full boundary conditions 011 the 

boundary of the block} ( A . l l )  

The  strategy now is the following: we first. prove the inclusion (A.9) aod their by 
using theorem 3.1, which can be applied by the definition of the event Qy,  we will 
factorize the probabilities appearing in (A.8). 

In order to prove (A.9) we show tha t  

Q, n ( Q ; 2 o c  c 0;'. (A.12) 
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Thus let us suppose that the event 0; did not happen; then there are two different 

(a) In 5,; and in Bj' there exists always an empty site for any time s E [fn, t ,  - 11. 
(h) There exists a time interval [rl ,r2] c [fn,tn - 11 such that a t  least one of 

the blocks B T ,  BT has been completely full of particles for any time s (half integers 
included) in fr,, r2]. 

possibilities: 

In (a) (A.12) is obvious. 
In (b) let for definiteness B: he the block that is full during the time interval 

[r1, r21. 

Remark 1. There cannot exist any other interval [r',, r;] c [f, , t ,  - 11 with say 7; > r2 
where E: is full, since in that case, by choosing s1 = r2 and s2 = r l ,  0; would have 
occurred for the basic dynamics and a fortiori for the dynamics with full boundary 
conditions. 

Remark 2. During the time interval [r,, r2] the block cannot be totally full of 
particles. In that case in fact a t  time r2 + f $E; would he empty and, therefore, by 
choosing s, = r2 and s2 = t , ,  Q: would have occurred. 

Conclusion. 
and analogously for 

For any s E [in, t,] if gB: is full then there exists an empty site in E: 
and 5,:. Therefore (A.12) follows. 

We are now in a position to complete the proof of lemma 2.3. Using (A.9)  we first 
estimate the RHS of (A.8) as 

SUP E,ni<n-t-i , i~,X(Qi)E~;" - nj=n-r . . . ~ ( x ( Q ; )  + X(Qy))(njc,X(*j ). (A.13) 

At this stage we use the structure of the events Qi "7 together with theorem 3.1 
to estimate the RHS of (A.13) by 

SUP E ~ n i ~ " - t - l , i ~ , ~ ( 0 ; ) E ~ ~ "  (nj~,X(Qj)[sup. Po,. (a; U Q7)1' 
ain 31 

= SUP E , ~ i < , - ~ - l , x ( Q i ) f ( ~ ) '  - (A.14) 

where f(/) =supol , j  Pozn(Qi U07). 
Thus by iteration 

sUPp,,(ni=l.. .ai) 5 f ( v .  
0 

Thus  it remains to prove that Iim,-- f ( / )  = 0. 
We estimate f (1 )  by 

f(l) 5 suP.PoI"(Q;) + por"(fiy). (A.15) 

The first and the second term in the RHS of (A.15), using the definition of Qi, ny, 
0;" 81 

can he bounded by 

to(l)2411(/)"3 and P(1) 

respectively, Thus f(/) tend to zero as 1 -+ cc because of (A.5) and lemma 3.2. The 
lemma is proved. 0 



A simple siochaslic cluster dynamics: rigomus resulis 3157 

We can now finish the proof of lemma 3.1. Clearly the blocks Bi that are either 
terraces or relative maxima for the curve y E r satisfy the hypotheses of lemma 3.3 
provided the maximum height of y does not exceed t - T(I),  with the only possible 
exception of being at  relative distance at  least 21. This last problem is easily overcome 
by separating the set of relative maxima and terraces into two classes such that any 
two elements in the same class satisfy these distance condition, and then, using the 
Schwartz inequality, by estimating the probability of the intersection of the two classes 
with the product of the square root of the probability for each class. The probability 
of each class is estimated using lemma A.2. The final result is 

provided I is large enough depending on p and f ( l )  is as in lemma 2.3. Lemma 2.1 is 
proved with m(l,p)  = -log(f(l)). 
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